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ABSTRACT

This paper describes a calibrated and an uncalibrated method for integrating a vision system with

touch sensors and a Coordinate Measuring Machine (CMM). Traditionally, vision systems are used to

measure machined parts and to localize manufacturing defects based on appearances. Our system relies

on a “coarse-fine” approach to integrating vision with CMMs. Vision guides the CMM to the feature to be

measured and the CMM performs the actual measurement. The resulting system is capable of quickly

inspecting large regions with high resolution. We will examine what impact the internet may have on

CMM technology and the ways in which vision can make CMM technology accessible over it. We will

also present results demonstrating the power and flexibility of new, uncalibrated vision techniques.

DISCLAIMER

Certain commercial equipment, instruments, and materials are identified in this paper in order to

adequately specify the experimental procedure. Such identification does not imply recommendation or

endorsement by NIST, nor does it imply that the equipment, instruments or materials identified are neces-

sarily best for the purpose.



1. Introduction

In the past, Coordinate Measuring Machines (CMMs) required extensive human intervention to

take measurements. The human operator controlled all of the CMM’s movements and indicated when
data points should be logged. When new parts needed to be measured, the operator analyzed the measure-

ments to be taken and then proposed a measurement plan, which consisted of a list describing how and in

what order the measurements were to be executed. The chief bottleneck in such CMM systems was the

human operator. Since the operator had complete control of the CMM at both the highest and lowest

level, the measurement process depended highly on the skills of the CMM operator.

This paper describes how vision-based CMM control algorithms may be used to perform some

CMM programming tasks. Some of the paper highlights include the following:

• A proposed decomposition of certain measurement tasks to determine which sub-tasks are suitable

for human control and which are suitable for CMM control.

Instead of relying whoUy on one or the other, the operator and machine work together in a coordi-

nated manner to perform measurements.

• A description of several improvements made to the general operator-CMM interface.

This includes the development of a system where a human operator plans, requests, and monitors

a series of measurement tasks for a CMM system from a remote site.

• A description of how computer vision may be used by both the CMM and human operator to observe

and control a measurement task.

We have developed vision algorithms which enable a CMM to sense how it interacts with objects

in the 3D world. Using these algorithms, the CMM is capable of “learning” the mapping between

image space and the 3D world. We have experimented with two forms of algorithms: calibrated

and uncalibrated.

• A description of how vision may be used to perform “virtual” fixturing. Mechanical fixtures are com-

monly used to constrain the positions of parts before they are measured.

By constraining the part, the measuring system removes much of the positional ambiguity before

measuring the part. Vision is capable of performing a similar task. Similar to mechanical con-

straints, vision can use optical constraints to limit a part’s positional ambiguity.

• Finally, a brief discussion of the benefits of hierarchical control.

Our system controller implements coarse-fine control. Vision is used to direct the movement of

the CMM with millimeter precision, while touch probes are used to recover sub-micron displace-

ment information. Combined together, vision and touch give the system an extremely fast way to

recover dense, high-precision measurement data.



2. Background Information

The Next Generation Inspection System (NGIS)[10] is a multi-year effort to develop a CMM test-

bed for testing and developing advanced sensing and control technology. NGIS draws on research from

many diverse fields including robot control, image processing, tracking, and metrology.

Our work is a direct consequence of our previous research experience in integrating imaging sys-

tems with robot technology. A relatively complete compendium of the different research approaches

examined in field of integrating vision and robot systems can be found in [6]. One of the works cited is

Allen et al. [2] where we demonstrated that real-time control of tracking and grasping is possible using

stereo cameras. This work shows that calibrated stereo vision, coupled with a suitable prediction and

noise filtering module, is capable of controlling and coordinating the movements of a robot and gripper

system. In Yoshimi and Allen [14], we have shown that the peg-in-hole insertion task may be performed

with an uncalibrated camera. This work demonstrated that carefully chosen visual invariants may be used

to drive a robotic process efficiently. An uncalibrated camera was used to direct the movements of a Puma
560 robot. The robot’s task was to insert a thin peg into a 2 mm hole. The system performed the peg-in-

hole insertion repeatably. In Yoshimi and Allen [13], we have shown that robot grasping and manipula-

tion is possible with weakly calibrated cameras. By using image Jacobian-based techniques, a robot sys-

tem was capable of compensating for image calibration errors. In both systems, vision was used to close

an otherwise open loop manipulation problem.

More recently, Nashman et al. [10] described how vision data could be used to control the acqui-

sition of scanning touch data. Their system measured the surface profile of a piston head using visual

feedback to control the velocity of the probe tip. Vision served two purposes in their system. First, vision

was used to recover the head of a piston. Second, it was used to control the velocity of the probe as it

moved across the surface of the piston head. As the tip of the probe approached the lip of the piston head,

the probe’s velocity decreased. Our current system extends upon this work.

The NGIS controller is the NIST Real-time Control System (RCS) [1]. Several projects at NIST

and industry have adopted RCS for building robot controllers. RCS has been used on welding, deburring,

and milling machines. NGIS uses the RCS libraries to control the CMM, probe, and vision systems. RCS
is a multi-level, hierarchical control system. At the lowest levels, the system models the organization of a

single machine. These levels include servo, primitive (prim), elementary-move (e-move) and task. At

higher levels, RCS addresses the needs of workstations and factory control. Each level operates on a dif-

ferent time and space scale. At the lowest levels, joints and encoders are controlled at the servo level with

milli-second accuracy. At the highest levels, factory schedules are controlled with day accuracy. RCS is

conducive to rapid prototyping, code-reuse and concurrent software development. The NGIS system

implements the 4 lowest levels of RCS control: servo, prim, e-move and task.

Before going into depth about our system, we will examine two issues related to the integration of

vision and touch. First, we will examine how two paradigms of visual control, calibrated and uncali-

brated, apply to CMM control. A calibrated vision system provides a direct mapping between image

space and the 3D world. An uncalibrated system does not depend on having such a mapping before oper-

ating. An uncalibrated vision system forces us to develop techniques which do not depend on the image

space-to-3D world mapping. Although at first glance uncalibrated vision systems look impractical, they

are, in fact, cheap to construct and resilient to minor perturbations. We will describe techniques we have

developed to perform visual control in both environments.



Second, we will describe some of the challenges faced in developing a distributed interface to all

of the individual parts of the system. In particular, we will describe how the user interface was derived to

be “internet-friendly” and why developing a CMM measurement system with the internet in mind is a

good idea.

3. Vision paradigms - Calibrated vs. uncalibrated vision

Two distinct vision paradigms exist in the visual control domain. The first paradigm, calibrated

vision, uses calibrated camera systems and performs all control operations in 3D world coordinates. The

second paradigm, uncalibrated vision, uses image Jacobian-based techniques. These two paradigms will

be described in more detail in the following subsections.

Calibrated vision

Calibration gives the position and orientation of a set of cameras in the 3D world and the optical

characterizations of those cameras. Once the camera cahbration is known, the position of any object visi-

ble in those cameras may be back projected into the 3D world to determine its 3D position and orienta-

tion.

Manipulation under a calibrated camera system is typically performed in the 3D world coordi-

nates. Part locations and the location of the CMM may be specified in 3D. Manipulation is relatively

straightforward. Distances to objects are determined using straightforward Cartesian calculations. Grasp-

ing and manipulation strategies may also be performed in Cartesian space. Basically, under calibrated

vision, all manipulation problems requiring vision are transformed into 3D Cartesian-based manipulation

problems.

However, the camera calibration problem is known to be very difficult. Many researchers have

spent their careers examining this problem. Karara’s handbook [8] is considered to be one of the most

complete handbooks on camera calibration. Still, every year, more and more researchers spend time,

money, and effort to develop new calibration techniques and/or to implement and understand old tech-

niques.

Calibration techniques usually fall in two general classes: simple, fast calibrations and complex,

slow calibrations. Simple, fast calibrations describe the image space to 3D-world mapping with a small

number of variables usually using a small number of initial calibration data points. These techniques

include many variations of the two plane technique such as the one by Martins et al.[9] and techniques

which rely on imaging 8 comers of a viewing volume such as that by HoUinghurst and Cipolla[7]. Gener-

ally, these techniques are simple to implement and may be performed relatively quickly. All of these

methods produce rough calibration results. Using these calibration techniques usually results in large

errors when projecting image space points into the 3D world.

Complex calibration techniques, like many of the algorithms covered in [8], recover the calibra-

tion of a camera system with a large number of variables representing many different optical distortions.

Unlike the previous set of cahbration techniques, these are highly polished numerical algorithms which

require the use of nonlinear optimizers to achieve their accuracy and precision. These techniques are

often slow, hard to understand, highly susceptible to noise and, at times, do not give better results than the

simple, fast techniques. Faster versions of these complex calibration techniques, such as Tsai [12] and

Castano [3], were designed to be used in machine vision apphcations. These faster versions use complex



models and nonlinear optimization to achieve precise calibrations. These methods also share many of the

problems with complex calibration including being difficult to explain, hard to understand, and sensitive

to noise.

Calibrating a camera system has many advantages. In an environment where a camera does not

move and its optics do not change, a one-time, well-performed calibration can be used for the entire life-

time of the system. In this case, recovering a highly accurate calibration is worth the initial start up cost.

Calibration also simplifies the visual control problem since all manipulations are performed in 3D world

coordinates.

Calibration, however, does not solve all problems in visual control. Because all cameras have a

finite number of sensing elements, choosing the right lens for ajob is very critical. The camera should see

enough of the world with high enough resolution to perform the desired operation. Due to the trade-off

between resolution and accuracy, most calibrations are typically accurate in only a small part of the

robot’s workspace. If a larger area is to be imaged, each pixel must cover a larger percentage of the world.

Since the spatial resolution of the image sensor remains constant, the overall 3D spatial resolution

decreases. If a smaller area is imaged, parts of the workspace remain unimaged and therefore, uncali-

brated. Another problem comes from introducing an artifact into the robot workspace, often one of the

first steps in most calibration algorithms. If the calibration process occurs once, the time to install and

remove the artifact may be insignificant. But, if daily recalibration is necessary the time spent introducing

and removing the artifact may become significant. As mentioned earlier, calibration algorithms are still a

subject of intense research. Many of the sophisticated calibration methods require careful estimation of

highly sensitive tuning parameters. Since nonlinear optimization is notoriously sensitive, many of these

algorithms are difficult to implement and use.

Calibration, a time consuming process, needs to be performed any time the camera’s position

changes. If small perturbations are made to the camera system or to the calibration matrices, the calibra-

tion may fail catastrophically with no possibility of recovery. Calibration methods may make certain

assumptions about lens distortions which are violated for extremely high distortion lenses like many wide

field-of-view lenses. In many instances, these are the same types of lenses which are most useful in a

machine vision system.

Although calibrated vision systems have much to offer in a vision-guided robot system, the prob-

lems associated with their implementation make them difficult to use in certain CMM/vision configura-

tions. These problems encouraged us to explore the new uncalibrated techniques described in the next

section.

Uncalibrated vision or active vision

Uncalibrated vision and active vision are relatively new areas of study in the robotics and com-

puter vision fields. Generally, these terms imply that the vision system directs the information gathering

process. Examples of these techniques include visual servoing, visual object tracking, and gaze or ver-

gence control.

One advantage of these techniques is that they may not require explicit calibration. Since the

vision system controls the acquisition of data, it is possible for the system to “learn” the image space to

3D world calibration. One method for learning this calibration is through forming an image Jacobian, a

mathematical construct relating differential changes in image space to differential changes in 3D space.

An image Jacobian is similar to a calibration matrix except that its value changes at different locations in



space and is usually valid only for a single position in image space and 3D space.

Uncalibrated vision and, in particular, image Jacobian-based control have many advantages. First,

the amount of time necessary to recover an image Jacobian for a given position in space is nominal. The
initial start-up sequence for the recovery of an image Jacobian is to perturb the robot’s position along two

axes. Many precision camera calibration procedures require the introduction of artifacts in the robot’s

workspace. Introducing, imaging, and removing these artifacts requires time. Other calibration methods

requiring the robot to move to various positions in the environment also take time. By calculating the

image Jacobian only when necessary, we can save a great deal of system time and effort. The system can

immediately use Jacobians derived from this process.

Image Jacobians measure the relationship between image space and 3D space directly. Since the

vision system observes how the robot moves under different commands, it knows exactly how these com-

mands affect the pose of the robot in the 3D world. If the robot moves to a new position in space, the

image Jacobian can be quickly established for that new position. If the camera position changes, this, too,

may be learned. The key to developing active vision algorithms which use image Jacobians is to rely on

observed relative movements. These techniques require understanding how movements in the 3D world

affect the robot configurations in image space.

The process of updating an image Jacobian is similar to that of updating a calibration matrix.

Instead of performing a complete and possibly flawed calibration up front, image Jacobian-based tech-

niques are updated as they perform the desired robotic task. These methods are amenable to many
machine learning approaches.

As stated earlier, estimates of the image Jacobian appear to approximate the real image Jacobians

very well. Both [13] and [14] demonstrate that the discrete form of the image Jacobian is sufficient for

performing many robotics tasks. Yoshimi and Allen[14] demonstrate that even a single estimate of an

image Jacobian is sufficient if the task is well constrained. Yoshimi and Allen[13] also show that image

Jacobian-based techniques can be used for point-to-point robot control. Depending on what control law is

chosen and the value of the gains, it is possible to construct linear motion paths using image Jacobian

techniques.

Finally, using any differential technique like the image Jacobian allows the system to cancel out

many fixed calibration errors. In [13], the system could compensate for a base-fine shift of 400mm and

still accomplish a peg-in-hole insertion task. Any method which requires the robot to move to a calibrated

position would have had difficulty performing this task if the camera calibration were not updated.

Image Jacobians, however, are not without problems. One of the biggest problems is determining

when the Jacobians break down. It is possible to check the accuracy of the Jacobian by observing the

movements of the robot system in image space. If the signs of any of the terms in the Jacobian change or

the Jacobian becomes singular, the system can be ordered to recompute the Jacobian. Yoshimi and

Allen[14] have shown that large areas of a robot’s workspace have Jacobians which are quite similar.

Coupled with error minimizing techniques, an initial estimate of a Jacobian may be used over a large area

with little degradation.

In many situations, it may not be possible to calculate an image Jacobian. If the basis set is not

chosen carefully, an image Jacobian may be singular. This situation is not uncommon. Any Jacobian

computed where one of the axes is a vector which lies along a fine passing though the optical center of the

camera is an example. Selection of good basis sets for different robot/camera configurations is an open



research topic.

Also, using the initial image Jacobian, the robot may slowly converge to the desired control point.

This depends on how accurately the image Jacobian reflects the true image Jacobian at all points along

the robot’s path.

Still for many users, image Jacobian-like techniques are relatively cheap, straightforward starting

points for the implementation of visual control systems.

4. Internet-based delivery of measurement services

Most CMMs require resources beyond the reach of many small companies. The cost of buying,

installing, and maintaining a CMM is significant. We are currently working on designing technologies

which will enable small companies to operate off-site CMMs safely, efficiently, and effectively. Two
major problems with remote CMM operation exist. First, not everyone has CMM expertise. Mixing inex-

perienced users with expensive machinery is a guaranteed recipe for disaster. Second, the technology for

connecting potential users to CMMs is, at best, nominal. Currently, the most pervasive form of connectiv-

ity is the internet.

Current internet technology is not capable, and never will be capable of delivering the real-time

performance required for normal operator interfaces. The internet is at best non-deterministic and at

worst unreliable. We have developed an internet-based solution which overcomes some of these prob-

lems. If the only feedback a remote CMM operator gets is digitized video from a camera and simple mes-

sage packets, then packet delay and loss can cause the system to behave erratically. In the worst case, lost

or late control commands may cause extreme robot/probe damage. Whatever interface is implemented

should include the most basic of all CMM operations: the emergency stop (e-stop). The e-stop button is

probably the most important button on the CMM control panel, since it is often paramount to worker

safety. Operating an expensive CMM over the internet requires at least the same level ofCMM respon-

siveness.

The key to the success of internet-based operations on the NGIS system is the development of

internet-safe CMM operations. An internet-safe operation is one which was specifically designed with the

problems of the internet in mind (non-deterministic operation and no guarantee of delivery). For example,

if an operation is moving the probe until it contacts the part, normally a human operator would move the

probe using a joystick until the probe came close to the part. The operator would then reduce the speed of

the CMM and move the probe closer to the part. An experienced CMM operator can quickly judge which

velocity profiles to use when closing to the surface of a part.

Our system achieves this level of operation by separating the real-time component from the user

interface. The CMM only executes commands which are finite and have specific terminating conditions

independent of human reaction times to succeed. Similarly, high-level image processing is performed in

real-time on a dedicated image processor. Updates are sent to the user interface as quickly as possible, but

the system never assumes that the users have certain knowledge before the users perform some action.



Figure 1 . CMM and probe control panel.

Our system performs all probe tracking and robot control in real-time. E-stop commands are

automatically generated by the system based on probe and vision data. All other functionality runs in

non-real-time mode since the inherent uncertainties of the internet make it impossible to guarantee band-

width and connectivity. All operations must have some internal mechanism to keep the system opera-

tional. We have isolated the user interface (UI) components and have implemented robot manipulation

algorithms which do not rely upon “hard” real-time user interaction. Using the touch-based guarded

move operation isolates a potentially hazardous real-time condition. The system terminates a movement

operation when the probe moves into contact with an object. In this scenario, the real-time aspect of halt-

ing the robot does not depend on user intervention. While the user may initiate the task, task monitoring

and completion checking are under complete autonomous control.

Other examples of this technique include the visual guarded move - moving the CMM to a

desired position in image space, ID compliance against a surface - moving the CMM to a desired position

while maintaining probe contact with a surface to be measured, and 2D compliance against a surface -

forcing the CMM to maintain contact with a surface while maintaining a trajectory parallel to the surface

of contact. Notice that in all of these instances, the robot is autonomously controlled in real-time at the

lowest level of the hierarchy. At the task level, higher level control is less time critical and non-real time.

This programming model reinforces the separation of real-time and non-real-time components.

Implementation

The internet interface consists of two parts implemented in Java[4]. These two windows are the

probe/CMM control window and the vision control window. Each interface is independent. Exercising

the vision system without invoking the CMM and vice versa is possible. Visual servoing is possible,

though, only when both interfaces are active.

Figure 1 shows the CMM/probe window (or panel) is comprised of two parts. The CMM control

interface is on the left-side of the window. When the CMM/probe is invoked, the user interface connects

to four RCS communication channels which we call the Neutral Manufacturing Language (NML). Two
command channels exist for sending commands to the CMM and the probe. The other two channels

report the status information of the CMM and the probe. Robot positional status information is displayed

textually and through the slider bar. The user can modify the position of the robot by either sliding the



Figure 2. Vision control panel.

slider bar or typing in a position. The MOVE ROBOT command is only sent to the robot when the

MOVE ROBOT button is pressed. The MOVE ROBOT command actually violates some of the principles

discussed earlier. Why? There is no stop action. The CMM will not terminate a MOVE ROBOT com-

mand unless the goal position is reached. The GUARDED MOVE DOWN enhances the MOVE ROBOT
commands functionality by adding a probe-triggered guard function.

The probe subwindow (on the right-side of the CMM/probe window) is currently a status-only

window which displays the probe deflections. The window contents cannot be altered. In the future, we
will add probe changing capabilities when a probe changer becomes available.

The vision interface window (Figure 2) allows the user to see what the vision system “sees.” In

Figure 2, the top panel contains buttons which allow the user to connect to various vision processing

computers to provide visual feedback for control. In our laboratory, we have at least three such comput-

ers. The state of the user interface also determines what effect button clicks have on the image display in

the bottom panel. For instance, in the normal state, a button chck has no effect. Dragging the mouse with

the left mouse button depressed causes a box to be drawn on the image, perhaps to highlight some event.

If the interface is in add_tracker mode, clicking on the interface sends a message to the vision system to

allocate a tracker at the clicked-on image position. Currently, the system supports the creation of two dif-

ferent types of image-based trackers: threshold-based and correlation-based. Correlation-based tracking

is discussed in [10]. Threshold-based tracking examines pixels in a 10x10 neighborhood surrounding the

specific point. It finds the centroid of all pixels whose value satisfies some threshold criterion. The value

of the centroid is used as the position of the tracked point. The upper limit on the number of regions

tracked depends highly on the vision system and processing platform.

The vision interface also includes support for entities (albeit at a very primitive level currently).

Figure 3 shows the Entity Manager control panel used to manage vision scan paths. The probe will scan

the part surface while following these paths. The scan paths are point-based entities. The system is capa-

ble of recognizing three separate types of scan paths: the random “point-and-click” scan path, the inner

surface scan path (the inside of a pocket) and the outer surface scan path (the outside of a boss). All three



Figure 3. Entity manager control panel

types of paths are indicated in Figure 3. The circle on the lower right is a pocket to be scanned. The rect-

angle located in the circular path is a boss. The remaining two paths are arbitrary scan paths created by

the user with the point and click interface. In the next version of this software, this interface will be sup-

plemented with CAD model constructs.

Performance

Since Java is an interpreted language, the resulting software interfaces run approximately one

order of magnitude slower than compiled software. This performance cost was deemed acceptable for the

greater potential of easily distributable software. For the probe/CMM interface, the relatively low band-

width necessary for moving the CMM and observing the probe deflections does not seem to tax network

bandwidth. On the other hand, the vision interface requires tremendous bandwidth for video images.

Using uncompressed 320x240 8-bit grey scale images, we were able to get ~5Hz video updates to a Java

user interface. The video server, itself, was capable of processing video and tracking multiple targets at

30Hz. The video server could also relay these tracking results to the probe/CMM system at 30 Hz with

minimal delay.

Both interfaces benefited from using RCS Neutral Manufacturing Language (NML)[1 1] as the

communication library. First, having a standard communication interface makes it possible to swap out

the user interface and insert a higher level control module. This is one which possibly performs many of

the tasks the human operator performs without rewriting the CMM controller code. Moreover, since

NML supports multiple writers to a command channel, it is possible for both an expert and a novice to

connect to the same CMM and share control of that CMM during some measurement operation. Such

operations are normally not part of a standard CMM communications package. Second, a standard set of

CMM messages - conunands sent from other processes to the CMM process - allows us to concentrate on

the task of programming a CMM over learning a new language. The same user interface and/or higher

level control process can access our current CMM or a new CMM speaking the same language as long as

they both implement the same command interpreter. These and many other aspects of RCS are discussed

in [11].

5. System Description

Figure 4 is a schematic illustration of the NGIS system. The CMM controlled by the system is a



Figure 4. Illustration depicting CMM, probe and camera setup.

four degree-of-freedom Cordax. The rotational degree of freedom associated with the table has been dis-

abled for our experiments. An Automated Precision, Incorporated (API) 2D pan-tilt wrist has been

attached to the end effector of the CMM. Future experiments will include automatic normalization of a

probe principle axis to the surface scanned. For all of the experiments described in this paper, the wrist

was held in a fixed pose.

We have experimented with several different probes in this system. Currently, the complement of

probes includes a simple ID LVDT (linear variable differential transformer), a 3 DOF LVDT from API, a

capacitive sensor from ExtrudeHone and a laser triangulation probe from Sensor Adaptive Machines, Inc.

(SAMI). A kinematic base has been attached to the base of each probe to facilitate the connection of each

probe to the pan-tilt wrist.

The vision system consists of an Elmo “Lipstick” CCD camera with a 12mm lens. The Elmo gen-

erates both SVideo and NTSC output. The Elmo SVideo output is fed into a Sun Video digitizer mounted

in a Sun Ultrasparc workstation running Solaris 2.5. While the Sun Video digitizer is capable of digitizing

24-bit, 320x240 pixel color images at 30 frames per second (fps), the system only uses 8-bit, grey-scale,

320x240 pixel images. While many speciahzed vision systems exist which are capable of measuring sev-

eral million pixels per frame, most commercial off-the-shelfNTSC systems digitize at either a resolution

of 640x480 or 320x240 pixels. Even at 320x240 pixels, our system demonstrates the feasibility and utility

of vision-based robot control.

The NGIS software is constructed on top of a heterogeneous operating system environment. Cur-

rently, the Cordax CMM is controlled under VxWorks, the probes are controlled either under VxWorks or

Microsoft Windows NT, the vision system is controlled under Solaris, and the user interfaces are con-



trolled under Java Virtual Machine[4]. In most typical developmental environments, this number of oper-

ating systems would make the cost of maintaining communications libraries prohibitively expensive. The

NGIS system uses RCS NML to overcome this problem. NML allows many different processes running

on different computers to communicate with one another. NML has support for single read/write channels

and read/write channels with multiple readers and writers. It has support for queueing messages. It has

support for backplane, shared memory, and internet communication. The NML libraries that are available

free from NIST are compilable under VxWorks, Solaris, Lynx OS, and the many forms of Microsoft Win-

dows. [11]

As stated earlier, the connection between the various hardware and software components and the

user is handled through Java user interfaces. Java is a new language designed with the internet in mind.

Java code is not executed on the host machine; it is executed in the user’s web browser. The delivery

model for Java interfaces is as follows. A pointer to Java code is imbedded in an internet web page. The

user loads the web page into his/her web browser via an internet connection. When the pointer corre-

sponding to the browser is accessed, either by key press or by mouse click, the user’s web browser opens

a connection to the server holding the code, downloads the code and executes it in a secure “sandbox”

called the Java Virtual Machine. The Java Virtual Machine was especially designed to securely handle

code on the internet. For more information on Java see [4].

Figure 5 illustrates the relationship between the different coordinate systems in the NGIS system.

The following parameters are used in the paper to describe various relationships within our system:

• W- the world coordinate system.

Figure 5. Relationship between the different coordinate systems.



(^world’ ^world’ ^world) “ 3-Xes of 14^.

• Team camera transform matrix.

• P(X) - the perspective effect introduced by a camera system with focal length X.

•
(Ucam’ ^cam) " of the image space coordinate system.

• T3 - the transform from Wio the end effector of the CMM minus the probe.

• Tpj-Qbe - the transform from the end-effector of the CMM to the tip of the probe.

• TIP - the actual 3D location of the probe tip in the 3D world. TIP = T3 * Tp^obg

• TIP' - the projection of TIP into image space, w * TIP' = P(^) * * TIP.

• w - is a camera dependent scaling factor.

6. Experimental Results

We have developed two methods for vision-based CMM control. The first calibrates a camera

system using a standard calibration technique and then performs movements and manipulations. The

results of this calibration-based approach are presented in the next section. They illustrate the fidelity of a

simple camera calibration algorithm. The second section describes an image Jacobian-based technique

which requires almost no set-up time. Experimental results are presented demonstrating the efficacy of

the image Jacobian in performing a CMM measurement task.

Calibrated vision results

This section describes vision-guided CMM control using a calibrated vision system. The calibra-

tion is performed using an algorithm by Castano [3]. This algorithm is a nonlinear calibration procedure

which uses linear calibration results as the initial guess for an iterative search.

We used the following procedure to acquire calibration data for the algorithm. First, the probe is

mounted on the CMM, and the camera was mounted in a location where it could observe the workspace

of the CMM. The visible workspace of the vision/robot/probe system is initially estimated by hand. The

CMM is moved under joystick control to many different positions in the workspace to measure the extent

of the camera’s field of view. The probe is moved closer to the camera and then moved so the projection

of the probe lands as close as possible to the top-left, top-right, bottom-left and bottom-right comers in

camera space. It is not possible to reach these comers in most cases due to physical constraints. This

defines a “front plane” to the workspace. We then move the CMM away from the camera and perform the

same operation. This operation defines a “rear plane.” This fmstum-like space is then populated with

three dimensional points.

Next, a red light-emitting diode (LED) is attached to the probe tip. LEDs are inexpensive and are

easily tracked in images. All external lights are dimmed. The LED’s position is found by first threshold-

ing the image and then finding the centroids of the resulting pixel clusters. We assume the illumination



Figure 6. Track of LED in image space for the calibration experiment.

The coordinates are in pixels.

profile for the LED is uniform in all directions. The LED’s position in future frames is estimated using a

filtering/prediction algorithm described in [10].

The CMM is then commanded to move the probe to each predetermined 3D point within the frus-

tum-like space and then stop. The vision system tracks the LED during the entire movement. When the

probe stops, the vision system waits for the image to settle and then it records the (x, y, z) position of the

probe tip along with its (u, v) image position. The two sets of values are concatenated together to form

(Xj, yj, Zj, Ui, Vj) quintuplets.

Next we describe the results of one such calibration. For this experiment, the dimensions of the far

calibration plane was 292x104 mm. The dimensions of the near calibration plane was 191x133 mm. The

two planes were separated by 265mm. The exact comers of the calibrated work space were (-1 16.00, -

41.00, 22.0), (176.00, -41.00, 22.00),( 176.00, 63.00, 22.00), (-116.00, 63.00, 22.00), (-30.00, -41.00, -

243.0), (161.00, -41.00, -243.00), (143.00, 92.00, -243.00), and (-30.00, 92.00,-243.00). The units are

millimeters. The first four points determined the “far” plane. The last four points determined the “near”

plane. 100 data points were created in the far plane and 99 data points were created in the near plane. The

data points were found by interpolating between the comers of each plane.

Figure 6 is the path taken in image space by the LED as it moved through all of the calibration

points. The location of the LED was found by thresholding the entire image at a predetermined intensity

threshold. The LED’s position was calculated to be the centroid of the resulting pixel cluster. The starting

position of the LED is image location (252, 89). The final position is (24, 46). Castano’s calibration algo-

rithm returns a calibration matrix. Figure 7 shows the result when the original 3D points are projected

into image space using the resulting calibration matrix. The results appear to track the position of the

original points very well. The entire effort took approximately 30 minutes of machine and operator time.



Uncalibrated vision results

In this section, we describe our experiments and experiences in developing new image Jacobian-

based techniques for CMM control. Our method assumes that a mechanism exists for picking out the tip

of the probe in the image and for indicating the desired scan path. In this system, the probe tip and scan

path are indicated by the user on the graphic user interface.

We model the relationship between the camera system and image space using the following equa-

tion:

w V;

1

PW P'can, T3 Pprobe
, where Tpj-Qj^g — in end effector coordinates. (1)

Differentiating the above equation results in a relationship which relates image space with the 3D
world. However, full knowledge of all the parameters is necessary to derive the complete Jacobian matrix.

Since we assume that the calibration between image space and the world does not exist, we do not

recover the image Jacobian directly.

Instead, the system estimates the control movements for a 2D Z-X plane in 91^ If y is kept con-

stant, the differential relationship between image space and Wean be written as follows:

5z

8x

where J, the estimate of the image Jacobian, is

a b

c d

8u

5v
, for 6y = 0 . (2)

5z bz

5m 5v

Eq. (2) links small linear moves in image space to small linear moves in W

J = a b

c d

5m 5v

8x 8x
(3)

The algorithm the system follows to derive the initial image Jacobian is:

1. Move the CMM to some position in where TIP is observable in image space.

2. TIP projects to the point TIP' in image space. (Projections from 3D to 2D image space are denoted

by the prime notation.)

3. Move the probe to a new position TIP + (0, 0, 5z). The change in the pose of the probe tip in image

space (5u52, SV52) is recorded.

4. Move the probe to position TIP -
1- (5x, 0, 0). The difference between TIP' and the new position of the

probe tip in image space (5u5x, Svg^) is recorded.



Figure 7. Projection of original 3D points onto the image plane using the

calculated calibration matrix. Results are overlaid on original LED data

points. The coordinates are in pixels.

5. These perturbations (6z, 6x), (bus^, SV52), and (bus^, bv§x) are substituted back into equation (2) to

find the image Jacobian.

The resulting Jacobian approximation, J, may be applied in the following manner. If TIP' desired

the desired location for the probe tip in image space and TIP’ is the observed position of the probe tip in

image space, we can compute:

>
e TIPdesire6-TIP' (4)

Where e' is an image space vector which represents the difference between the desired tip posi-

tion and the observed tip position, e' can be converted into a 3D vector in Why:

1 = 7-1' (5)

I can be used to approximate a position in “M^where the probe tip might project to TIP' desired-

This position, I + TIP , can be fed to the CMM controller as the next desired position. Since the image

Jacobian is not uniform over the entire imaged region, e + TIP is only a very rough approximation to the

desired location. If the system only makes these error correcting moves, it is unlikely to converge to the

desired solution. This is especially true when the initial error is large. Instead, the control algorithm

updates its error estimate as soon as new image information becomes available. After bt, the time interval

necessary to process a new image, the probe tip travels to some new position, TIPj. Since the probe
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Figure 8. LEFT: Initial starting position of probe tip for experiment 1. TOP: U and V 2D position of

probe in image space vs. time BOTTOM: X, Y, Z 3D position of probe vs. time RIGHT: Complete tra-

jectory of probe tip as observed in image space.

started moving from TIP to e + TIP

,

TIP^ must lie between TIP and e + TIP

.

Instead of proceeding to

e + TIP , the system can use the knowledge that TIP travels to TIPj and that it observed TIP' move to

TIP/. The system calculates a new P based on these results and applies the associated e to TIPj. The low

gain associated with the image Jacobian-based correction causes the system to be overdamped. It con-

verges to the desired location without oscillation. Convergence is subject to many restrictions. First, the

region where servoing is to take place should be fairly planar. Perspective projection of a plane preserves

order making our initial estimate of the Jacobian sufficient. Second, the sign of the Jacobian must not

change in the region. Third, the Jacobian must be well conditioned in the region. As long as the general

sign of the image Jacobian is correct, the desired position will be achieved. Espiau et al. [5] have shown

that convergence is guaranteed if the signs of the image Jacobian are correct and that the performance of

the system increases as the approximation approaches the ideal value.

In our experiments, the time required to acquire the image Jacobian is about three seconds. The

system makes three assumptions regarding the vision/probe/CMM system for these experiments. First,

the perturbations must be observable by the imaging system. Second, the vectors which result from these

perturbations must not be collinear. The cross product of the two initial position changes made to

recover Eq. (3) must be non-zero. Third, the surface or object on which the servoing takes places must be

relatively planar.

To test the usability of the image Jacobian, we devised a few experiments to determine how it per-

forms under different conditions. In the first experiment, visually servoing to a point, the user indicates a

position in image space where he would like the CMM to place the probe tip. Before the experiment is

run, the NGIS system makes a guarded move to the part surface. The guarded move is in the -Y direction.

Once contact has been established, the system is put into surface compliance mode. We have imple-
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Figure 9. LEFT: User input path for CMM to scan. TOP: U and V 2D position of probe in image space

vs. time. BOTTOM: X, Y, Z 33DD position of probe vs. time. RIGHT: Complete trajectory of probe tip

as observed in image space.

mented a surface compliance scheme which allows the system move in the X and Z directions, while

maintaining a constant Y probe displacement. The CMM uses proportional error control to maintain this

displacement. The user interface sends the command VISUAL SERVO TO PT giving the (u, v) position

in image space as a parameter.

Figure 8 (LEFT shows the initial starting position of the probe as seen from the user interface.

The small square on the probe tip indicates the position of the probe tracker in image space. As the probe

moves in 3D, the square tracks the position of the probe in image space. The probe starts at image loca-

tion (57, 114). The system estimates the image Jacobian at that spot. The user then clicks on position (96,

143). Figure 8 (RIGHT) is a trace of the probe tracker in image space. Figure 8 (TOP) shows (u, v), the

probe’s position in image space, plotted against time. Figure 8 (BOTTOM) shows the actual x, y, z posi-

tion of the probe tip center in 3D plotted against time. In both graphs, the trajectory taken by the probe

was fairly smooth and free of errors. At time 35, the probe velocity decreases. We implemented a probe

velocity constraint which reduced the robot velocity when the probe approached within 10 pixels of the

desired position. This was originally used with a much slower system to keep the probe from oscillating

when it reached the goal position. In the future, we will examine more sophisticated control. During the

entire operation, the system maintained probe contact with the surface of the part as seen by the flat line

for Y in figure 8 (BOTTOM).

In experiment 2, the system started, once again, with the probe making a guarded move to the sur-

face of the part. The user then chcked in several locations in the vision user interface indicating a path for

the probe to follow. Figure 9 (LEFT) shows the starting image of the CMM with small arrows indicating

the scan path for the CMM. Figure 9 (RIGHT) is trace of the path taken by the probe over the entire path.

Figure 9 (TOP) shows (u, v), the probe’s position in image space, plotted against time. Figure 9 (BOT-
TOM) shows the actual x, y, z position of the probe tip center in 3D over time. In both graphs, the trajec-

tory taken by the probe once again was smooth and free of errors. During the entire scanning operation.
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Figure 10. LEFT: After calculating image Jacobian, camera was rotated -15 degrees counter-clockwise.

TOP: U and V 2D position of probe in image space vs. time. BOTTOM: X, Y, Z 3D position of probe vs.

time. RIGHT: Complete trajectory of probe tip as observed in image space.

the system maintained probe contact with the surface of the part.

Finally, in experiment 3 we repeated experiment 1 except in this case the camera system was

rotated approximately 15 degrees from the position where the image Jacobian was calculated. Figure 10

(LEFT) shows the initial configuration of the probe system as viewed from the rotated camera. Figure 10

(TOP), (BOTTOM) and (RIGHT) are similar to their counterparts in experiment 1. Even though the

camera position was disturbed, the system compensated for the disturbance and performed the desired

VISUAL SERVO TO PT operation.

6. Conclusion and Future Research

Our system demonstrates that vision may be used to guide the acquisition of precise CMM mea-

surements. We have shown that vision does not need to be calibrated with 3D space to be useful. We have

demonstrated that an uncalibrated vision system adds flexibility to a measurement task. When coupled

with an appropriate control strategy, uncalibrated vision may be used to direct CMM movement with

almost no set-up time. We have begun to investigate how the internet may be used to advance CMM tech-

nology. In particular, we have addressed the issue of internet-based CMM control and the use of internet-

safe CMM control strategies. We will continue to develop new sensor-servoed scanning techniques with

an ultimate goal of transferring these new technologies to manufacturing plants.
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